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Algorithm of the finite-lattice method for high-temperature expansion of the Ising model
in three dimensions

Hiroaki Arisue*
Osaka Prefectural College of Technology, Saiwai-cho 26-12, Neyagawa, Osaka 572-8572, Japan

Toshiaki Fujiwara†

Faculty of General Studies, Kitasato University, Kitasato 1-15-1, Sagamihara, Kanagawa 228-8555, Japan
~Received 18 September 2002; published 18 June 2003!

We propose an algorithm of the finite-lattice method to generate the high-temperature series for the Ising
model in three dimensions. It enables us to extend the series for the free energy of the simple-cubic lattice from
the previous series of 26th order to 46th order in the inverse temperature. The obtained series give the estimate
of the critical exponent for the specific heat in high precision.
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I. INTRODUCTION

The finite-lattice method@1–3# is a powerful tool to gen-
erate the high- and low-temperature series for the spin m
els in the infinite volume limit. It avoids the tedious work o
counting all the diagrams in the graphical method, and
duces the problem to the calculation of the partition functi
In two dimensions, the total amount of the calculations
the finite-lattice method increases exponentially with
maximum orderN of the series. On the other hand, in thr
dimensions, the total amount of the calculations increa
exponentially withN2 @4# and, except for some cases@5–13#,
many of the expansion series have been calculated by
graphical method. Here we present an algorithm of the fin
lattice method for the high-temperature expansion in th
dimensions, in which the total amount of the calculation
creases exponentially withN ln N, and this enables us to gen
erate the series to much higher orders than not only the s
dard algorithm of the finite-lattice method but also t
graphical method. In fact applying the algorithm, we w
extend the high-temperature series for the free energy de
of the simple-cubic Ising model to 46th order in the inver
temperature from 26th order obtained by the standard a
rithm of the finite-lattice method.

In Sec. II, we briefly review the standard finite-lattic
method to generate the high-temperature series of the I
model in three dimensions. In Sec. III, we present our al
rithm of the finite-lattice method. In Sec. IV, we apply o
algorithm to obtain the high-temperature series for the f
energy density of the simple-cubic Ising model. The ser
are analyzed to estimate the critical exponent of the spe
heat. Section V is devoted to summary and discussion.

II. FINITE-LATTICE METHOD

We consider the Ising model with spinssk561 on the
sitesk of the simple-cubic lattice with the Hamiltonian
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^k,k8&

sksk8 . ~1!

Here the summation is taken for all the bonds connecting
nearest neighbor sitesk and k8. The partition function is
given by

Z5(
$sk%

exp~2H/kT!, ~2!

where the summation is the average over all of the spin v
ables,

(
$sk%

5
1

2 (
s1561

1

2 (
s2561

•••. ~3!

In the finite-lattice method, to generate the hig
temperature series for the free energy density to orderN in
the inverse temperature, we first calculate the partition fu
tion Z( l x3 l y3 l z) for the finite size lattices with 2(l x1 l y
1 l z)<N. Here we use the notation for the lattice size su
that the 13131 lattice means the unit cube composed
23232 sites. The Boltzmann factor for each bond is e
pressed as

exp~bsksk8!5cosh~b!~11tsksk8!, ~4!

with b5J/kT and t5tanh(b). We define the bond configu
ration as the set of bonds to which factortsksk8 in Eq. ~4! is
assigned, while factor 1 is assigned to the other bonds of
finite size lattice. Nonvanishing contribution to the partitio
function comes only from the bond configurationC in which
the bonds form one or more closed loops:

Z~ l x3 l y3 l z!511(
C

j~C!. ~5!

Herej(C) is the contribution from the bond configurationC,
and we are neglecting the trivial factor coming from the fa
tor cosh(b) in the expansion of the Boltzmann factor in E
~4!. In order to obtain the series to ordertN, the summation is
taken for all possible bond configurations that haveNb<N
©2003 The American Physical Society09-1
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except for the trivial configuration withNb50, whereNb is
the number of the bonds in each bond configuration.

Then we make the Taylor expansion with respect tot of
the logarithm of the partition function for each size of t
lattice. The logarithm of the partition function can be writte
as

ln Z~ l x3 l y3 l z!5(
C1

j~C1!2
1

2 (
C1

(
C2

j~C1!j~C2!

1
1

3 (
C1

(
C2

(
C3

j~C1!j~C2!j~C3!1•••

5(
n

~21!n

n (
C1

(
C2

•••(
Cn

j~C1!j~C2!

•••j~Cn!. ~6!

We define the superposed bond configurationC̃5C11C2
1•••1Cn for each term in the right hand side of Eq.~6!.
We call two loops of the bonds connected if the two loo
share at least one bond with each other, otherwise dis
nected, and a set of loops are called connected if the
cannot be divided into two subsets such that any loop in
subset is disconnected with any loop in the other subset

It is well known @14# that only the superposed configur
tions C̃ composed of the connected loops contribute
ln Z(lx3ly3lz), i.e., all the terms in the right hand side of E
~6!, which have the same superposed configuration c
posed of disconnected loops, cancel with each other w
vanishing net contribution to lnZ. We call this Theorem I.

Next we define recursively@2#

f~ l x3 l y3 l z!5 ln@Z~ l x3 l y3 l z!#

2 (
l x8< l x ,l y8< l y ,l z8< l z ,

l x81 l y81 l z8Þ l x1 l y1 l z

~ l x2 l x811!~ l y2 l y811!

3~ l z2 l z811!f~ l x83 l y83 l z8!. ~7!

The termsf( l x83 l y83 l z8) are subtracted in this equation co
responding to eachl x83 l y83 l z8 sublattice of thel x3 l y3 l z lat-
tice and, by the translational invariance of the model,
same size of the sublattice has the same value off, giving
the factor (l x2 l x811)(l y2 l y811)(l z2 l z811). It is straight-
forward @2# to prove using Theorem I that the Taylor expa
sion off( l x3 l y3 l z) with respect tot includes the contribu-
tion from every connected superposed bond configura
that can be embedded into thel x3 l y3 l z lattice but cannot be
embedded into any of its rectangular sublattices. We call
Theorem II.

The expansion series of the free energy density in
infinite volume limit is given by

f 5 (
2(l x1 l y1 l z)<N

f~ l x3 l y3 l z!. ~8!
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The expansion series off( l x3 l y3 l z) starts from the term of
order tn with n52(l x1 l y1 l z), which comes from one
closed loop of bonds which has two intersections with a
plane perpendicular to the lattice bonds. Thus it is enoug
restrict the lattice sizes for the summation in Eq.~8! to those
that satisfy 2(l x1 l y1 l z)<N in order to obtain the series fo
f to ordertN.

In calculating the partition function of the finite size la
tice, the transfer matrix formalism with the site-by-site co
struction@15,16# is used. The total amount of the calculatio
and the necessary computer memory is proportional to
number of the bond configurations in the smallest tw
dimensional cross section of the finite size lattice, which
roughly 2l xl y for l x< l y< l z . To generate the expansion seri
to orderbN, the maximum size of the lattice to be taken in
account isl x; l y; l z;N/6, so the central processing un
~CPU! time and the memory increase exponentially withN2

in this standard algorithm of the finite-lattice method.

III. ALGORITHM

In the standard algorithm of the finite-lattice method, t
partition function for the finite size lattice is calculated wi
all the bond configurations taken into account. The point
our algorithm is that, in order to obtain the series to a giv
order, however, it is enough to consider only a restric
number of bond configurations.

Let us consider the anisotropic model of the simple-cu
Ising model withb i andt i5tanh(bi) ( i 5x,y,z) in the frame-
work of the finite-lattice method described in Sec. II. T
partition functionZ( l x3 l y3 l z) can be written in exactly the
same way as Eq.~5!. In order to obtain the series to orde
tx
Nxty

Nytz
Nz in the standard algorithm, the summation is tak

for all possible bond configurations$C% that haveNbx<Nx ,
Nby<Ny , Nbz<Nz except for the trivial configuration with
Nbx5Nby5Nbz50, whereNbx ,Nby , andNbz are the num-
ber of the bonds inx, y, andz direction, respectively, for each
bond configuration. Let us definenzi as the number of the
bonds in thez direction for thei th layer perpendicular to the
z axis (i 51,2, . . . ,l z) for each bond configuration.

We find that the lowest order intz of the terms inf( l x
3 l y3 l z) given by Eq.~7!, which involvej(C) for the bond
configurationC with $nzi%, is ( i 51

l z max(nzi,2). We call this
Theorem III.

The proof for this is the following. Ifnzi>2 for all i
51,•••,l z @see Figs. 1~a!–1~c!#, ( i 51

l z max(nzi,2)5( i 51
l z nzi is

equal to the order ofj(C) in tz . Then it is obvious that
Theorem III is true. If nzi is zero for at least one ofi
51, . . . ,l z @see Figs. 1~d! and 1~e!#, the configurationC is
either disconnected or can be embedded into some recta
lar sublatticel x83 l y83 l z8 with l z8, l z . Then, by Theorem II,
the termj(C) can contribute tof( l x3 l y3 l z) only when it is
multiplied by one or more otherj(C8)’s in Eq. ~6! so that
their superposed configurationC̃5C1C8(1•••) should be
composed of connected loops that cannot be embedded
any rectangular sublattice of thel x3 l y3 l z lattice. In order to
prevent embedding of the superposed configuration into
rectangular sublattice,ñzi should satisfyñzi>2 for all i
9-2
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ALGORITHM OF THE FINITE-LATTICE METHOD FOR . . . PHYSICAL REVIEW E67, 066109 ~2003!
51,2, . . . ,l z , whereñzi is the number of the bonds in thez

direction for the superposed bond configurationC̃. Therefore
the lowest order of the term inf( l x3 l y3 l z) to which the
configurationC can contribute is again( i 51

l z max(nzi,2).
Thus to obtain the series forf( l x3 l y3 l z) to orderNx ,

Ny , and Nz52l z1DNz in tx , ty , and tz , respectively, we
introduce in our algorithmf( l x3 l y3 l z ,DNz) defined recur-
sively by

f~ l x3 l y3 l z ,DNz!

5 ln@Z~ l x3 l y3 l z ,DNz!#

2 (
l x8< l x ,l y8< l y ,l z8< l z ,

l x81 l y81 l z8Þ l x1 l y1 l z

~ l x2 l x811!

3~ l y2 l y811!~ l z2 l z811!f~ l x83 l y83 l z8 ,DNz!. ~9!

Here the partition functionZ( l x3 l y3 l z ,DNz) is calculated

FIG. 1. Examples of the bond configuration forZ( l x3 l y3 l z)
with l x53, l y53, l z54.
06610
only with the bond configurations taken into account whi
haveNbx<Nx , Nby<Ny andnzi with

(
i 51

l z

max~nzi,2!<2l z1DNz . ~10!

By Theorem III, any configuration that has( i 51
l z max(nzi,2)

.2l z1DNz contributes tof( l x3 l y3 l z ,DNz) in the order
greater than 2l z1DNz . As an example, if we takeDNz52
for the 33334 lattice, we should take account of Fig
1~a!–1~c!, each of which has( i 51

l z max(nzi,2)<10, and we
should neglect Figs. 1~d! and 1~e!, each of which has
( i 51

l z max(nzi,2).10, among the configurations given in Fi
1 according to the condition of Eq.~10!. In spite of the fact
that the configuration Figs. 1~a!–1~e! all have the same
( i 51

l z nzi510, the first three contribute tof(33334) to or-
der tz

10 while the other two do not.
One important point in our algorithm of the finite-lattic

method is that in the recursive definition off( l x83 l y8
3 l z8 ,DNz) with l x8< l x ,l y8< l y ,l z8< l z , the common value of
DNz should be taken for all these lattices. It guarantees
the cancellation between the term in ln@Z(lx3ly3lz)#, which
comes from the superposed bond configuration that can
embedded into thel x83 l y83 l z8 sublattice, and the correspond
ing term in f( l x83 l y83 l z8) in the right hand side of Eq.~7!
will be kept in the right hand side of Eq.~9! by keeping or
neglecting simultaneously the bond configuration for the p
tition function Z( l x3 l y3 l z), which can be embedded jus
into the l x83 l y83 l z8 sublattice, and the same bond configur
tion for the partition functionZ( l x83 l y83 l z8).

The contribution of the bond configuration with$nzi% to
the partition function of the finite size lattice can be calc
lated by the transfer matrix formalism as

Z~$nzi%!5V0,j 1
tz
nz1Vj 1 , j 2

tz
nz2

•••t
z

nzlzVj l z
,0 . ~11!

Here Vj i , j i 11
is the transfer matrix element with incomin

nzi spins and outgoingnzi11 spins and the summations ove
the spin locationsj 1 , j 2 , . . . of thenz1 ,nz2 , . . . spins, re-
spectively, are assumed in the right-hand side of Eq.~11!.
This transfer matrix element itself is the partition function
two dimensions withnzi1nzi11 spins attached, which can b
calculated to any order intx andty efficiently by the site-by-
site construction@15,16#. The amount of the calculation fo
each transfer matrix element is proportional to the combi
torial factor C„( l x11)(l y11),nzi1nzi11…, 2l x, and l xl y ,
which are the number of the cases for attaching thenzi
1nzi11 spins to the (l x11)(l y11) sites, the number o
states in site-by-site construction for the partition function
the Ising model in two dimensions, and the number of r
evant bonds, respectively.

To obtain the series to orderN in the isotropic model, we
calculate the expansion series for each of thef( l x3 l y3 l z)’s
defined by Eq.~7! in the anisotropic model to ordertx

Nxty
Nytz

Nz

with Nx1Ny1Nz5N, using our algorithm described abov
and settx5ty5tz5t finally. When we use our algorithm fo
9-3
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each lattice size l x3 l y3 l z and each of the order
Nx ,Ny ,Nz , we can make the simultaneous exchange of
lattice axes and the corresponding orders as (l x3 l y
3 l z ;Nx ,Ny ,Nz)→( l x3 l z3 l y ;Nx ,Nz ,Ny) or (l x3 l y
3 l z ;Nx ,Ny ,Nz)→( l y3 l z3 l x ;Ny ,Nz ,Nx), which have the
chance to reduce the amount of the calculation for the tra
fer matrix elements.

We estimate the total amount of the calculation tim
Tcalc(N) to generate the free energy series to orderN by
listing up all the transfer matrices needed and summing
the estimated time to calculate each of the matrices, whic
plotted in Fig. 2, together with the estimated total calculat
time for the old algorithm of the finite-lattice method. Th
numerical estimation for the new algorithm agrees well w
the actually used calculation time forN<46. We see that the
calculation time for the old algorithm grows exponentia
with N2, while that for the new algorithm can be fitted b
A exp(BN ln N1CN1D ln N) with B;0.15, C;20.24, and
D;3.6. We can simply understand this exp(BN ln N1•••)
behavior as follows. The maximum size of the lattice to
taken into account isl x5 l y5 l z5N/6, for which DNz50
and we have only to consider the bond configurations w
nzi52 for all i 51,2, . . . ,l z . The largest amount of the ca
culation is to be paid for the partition function of the lattic
that has smaller size ofl x; l y; l z;N/12, for which the
maximum ofnzi1nzi11 is aboutN/6 and the product of the
above factors isC„(N/12)2,N/6…2N/12(N/12)2, and it grows
as exp(BN ln N1CN1D ln N) with B51/6 for largeN.

IV. RESULT

Using our algorithm of the finite-lattice method, we ha
calculated the high-temperature series for the free ene
density of the simple-cubic Ising model to orderN546. The
coefficients of the obtained series

f 53 cosh~b!1(
n

antn; t5tanh~b! ~12!

are listed in Table I. They agree with those given by Bha
et al. @5# to orderN524 and by Guttmann and Enting@6# to

FIG. 2. Total amount of the calculation to generate the serie
order N by the old algorithm and the new algorithm of the finit
lattice method.
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orderN526. We have added ten new terms to these previ
series. To obtain the series of orderN526 in our algorithm,
we needed only the computer memory of 1 Mbytes and
CPU time of 5 min in a standard PC, and to orderN546 we
used the total memory of 2 Gbytes and the CPU time of 2
in CP-PACS at Tsukuba University.

Following is the result of the preliminary analysis of th
series for the specific heatC(t)5(ncntn. We plot in Fig. 3,
the critical exponenta versus the critical valuebc for the
first-order inhomogeneous differential approximants@17# of
the series ofN540–46. From the linear dependence ofa on
bc we find a50.1045(1) ora50.1077(2) at the valuebc
50.221 654 59(10)@18# or bc50.221 659 5(15)@19# ob-

to

TABLE I. High-temperature expansion coefficients for the fr
energy density of the simple-cubic Ising model.

n an

2 0
4 3
6 22
8 375/2
10 1980
12 240 44
14 319 170
16 180 590 31/4
18 201 010 408/3
20 516 228 363 3/5
22 163 970 407 50
24 266 958 797 382
26 443 759 665 054 8
28 525 549 581 866 326/7
30 644 828 436 349 120 2/5
32 179 577 198 475 709 847/8
34 395 251 648 062 268 272
36 210 936 621 888 205 205 21/3
38 126 225 408 651 399 082182
40 456 921 753 319 676 199 778 5/2
42 291 912 871 109 686 238 579 40/7
44 841 0722 262 379 235 048 686 604/11
46 141 203 142 047 137 197 668 882 10

FIG. 3. Critical exponenta versus the critical valuebc for the
inhomogeneous differential approximants of the first order.
9-4
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tained in the recent Monte Carlo simulations. The seco
order inhomogeneous differential approximants give alm
the same value. We also made the ratio analysis. The
quencean5(tc

2c2n /c2n2221)n11, which is expected to
behave asa1b/nD1c/n1••• with the correction-to-
scaling exponentD;0.5 @17#, is plotted versus 1/n in Fig. 4
for bc50.221 654 59. The sequence forn514–23 given by
the new 10 coefficients has a bit different slope fro
the sequence forn<13 given by the previously obtaine
series. The three-parameter fitting of the newly obtain
sequence for bc50.221 654 59 gives a50.1036(10),
b520.007(10), andc50.17(2) for D50.5. As for the
case of bc50.221 659 5, it gives a50.1082(14), b
520.033(10), andc50.21(2). These estimated values o
a by the inhomogeneous differential approximation and
the ratio method are not inconsistent with each other. We
on the other hand, that the estimated values ofa depends
crucially on the value ofbc , and in order to determinea
precisely in these biased method we need more precise v
of bc . We also notice that the correction-to-scaling term
very small, which was already pointed out in the analysis
the shorter series@5,6#.

From the hyperscaling relationa522dn the high-
temperature series for the second moment correlation le

FIG. 4. Sequencean plotted versus 1/n.
.
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givesa50.1088(39)@20# anda50.1096(5)@21#, and thee
expansion givesa50.1085(75)@22#. More direct estimation
of a50.110(2) was also given by the high-temperature
ries for the magnetic susceptibility of the antiferromagne
critical point @21#. We note that our estimated value ofa
using bc50.221 654 59 is not consistent with these valu
~except for the value by thee expansion!, but the value using
bc50.221 659 5 is rather closer to them.

V. SUMMARY

Our algorithm of the finite-lattice method has been giv
to generate long series of the high-temperature expans
for the Ising model in three dimensions. It drastically im
proves the computational efficiency of the finite-latti
method in three dimensions. The CPU time necessary to
tain the series to orderbN increases exponentially with
N ln N, while it increases exponentially withN2 in the origi-
nal version of the finite-lattice method. Our algorithm h
been applied to the high-temperature expansion for the
energy of the simple-cubic Ising model, generating the se
to orderb46, and it is much longer than those by the origin
version of the finite-lattice method and by the diagramma
method.

The basic idea presented here in our algorithm of
finite-lattice method can be applied to the high-temperat
expansion of other quantities such as the magnetic susc
bility and the correlation length for the Ising model in thre
dimensions, and it can also be applied to the models w
continuous spin variables such as theXY model in three
dimensions. Furthermore, the idea can be used in the l
temperature expansion for the spin models in three dim
sions. We can expect that it will enable us to generate
expansion series in much higher orders compared with
presently available series.
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